Как Здравие
Меню

Ресинтез АТВ – основные принципы биохимического спорта

Процесс ресинтеза АТФ жизненно необходим для организма человека, для того чтобы постоянно поддерживать работоспособность и жизнедеятельность мышечных тканей.

Схема ресинтеза АТФ

Схема ресинтеза АТФ

Выделение необходимых элементов и кислот при течении ресинтеза обеспечивает возможность, к примеру спортсменам, на протяжении долгого периода держать мышечную ткань в напряжении.

Находясь в покое, для поддержания своего состояния и текущих процессов метаболизма, мышцам необходим постоянный ресинтез АТФ и выработка соответствующих элементов.

Процесс ресинтеза аденозинтрифосфата

Механизм возникновения аденозинтрифосфата представляет собой процесс, который должен постоянно происходить в организме человека, для обеспечения работоспособности мышц в состоянии покоя. При этом, потребление ими аденофосфатов возрастает, в тот момент, когда происходит сокращение мускулатуры.

Ресинтез АТФ поставляет тканям необходимую энергию для работоспособности и актомиозиновый комплекс элементов, а в активном состоянии обеспечивает их необходимым количеством ионами кальция.

Для этого количество аденозитрофосфорной кислоты в мышечных тканях постоянно восстанавливается. При этом оперативность восстановления равняется времени потребления, этот процесс происходит за счет определенных биохимических механизмов ресинтеза.

Элементами, выступающими в роли источников протекаемого ресинтеза АФТ в организме, могут быть мышцы «костяка» и некоторые другие ткани. Именно эти энергетические источники богаты фосфатосодержащими элементами:

  • Креатинофосфатом
  • Аденозинфосфатом

Помимо этого, в процессе катаболизма, образуются:

  • Гликоген
  • Кислоты
  • Энергетические компоненты

По итогам протекания процесса окисления в аэробной среде, в организме возникают элементы градиента. В мышцах располагается примерно 0,20% АТФ, при этом возрастает значение концентрации «%», и угнетение миозиновой массы, вследствие чего, обеспечивается исключение возникновения мышечных спаек.

Но концентрация содержания в мышцах АТФ не должна снижаться, менее 0,1%, в противном случае мышцы будут сокращаться до своего полного истощения. Это обеспечивается за счет того, что в этот момент перестает работать кальциевая система в саркоплазматической ретикулума.

В случае истощения мышцы, начинает развиваться ригора, т. е. системное не проходящее сокращение.

Анаэробные и аэробные процессы ресинтеза в мышцах

Работоспособность мышц обусловлена ресинтезом АТФ

Работоспособность мышц обусловлена ресинтезом АТФ

Ресинтез АТФ – это реакция с условиями аэробных и анаэробных механизмов.

Протекание реакции, в активный период, может проходить, как в результате реакции, при наличии анаэробных условий.

Анаэробные процесс ресинтеза протекают без участия кислорода, при условии наличия кислорода – реакция называется аэробная.

При постоянных показателях, ресинтез АТФ протекает, с участием кислорода, следовательно, наблюдается аэробный процесс.

Вследствие напряженного физического труда процесс ресинтеза АТФ не происходит, так как доступ кислорода к мышцам исключен. В мышцах «костяка» наблюдаются всего три анаэробных процесса и один аэробный – восстановление аденозинтрифосфата.

Подобный процесс включает в себя такие механизмы, как:

  • Креатинфосокиназный
  • Алактатный
  • Лактатный
  • Миокиназный

Непосредственно протекание аэробного процесса включает себя течение окислительного фосфалирования, количество митохондрий при этом значительно повышается. При аэробном окислении, наблюдается выработка энергетического субстрата:

  • Глюкоза
  • Жирные кислоты
  • Некоторые аминокислоты
  • Молочная кислота
  • Кетоновые тела

Аэробный механизм или, как его еще называют кислотный, представляет собой важный процесс для спортсменов, так как обеспечивает скорость и выносливость. Именно аэробная реакция может поддерживать мышцы в постоянном напряжении на протяжении длительного периода времени.

Кислородные реакции в мышцах обеспечивают их работоспособность энергией, в основном, за счет химического взаимодействия таких пищевых веществ, как жиры и углеводы непосредственно с кислородом. Все нужные компоненты поступают в организм спортсмена совместно с пищей и накапливаются в запасниках до момента пока будут необходимы.

К примеру, сахар и крахмал, которые выступают в роли углеводов, образуют элемент – гликоген. В среднем, в организме человека гликоген может до 70-80 минут обеспечивать работу субмаксимальной работоспособности. Но при этом уровень жиров в организме никогда не исчерпывается.

Именно, углеводы являются самым эффективным из энергопоставщиков для организма, если сравнивать с жирами.

Это обусловлено тем, что при одинаковом потреблении, для их окисления требуется на 10% меньше кислорода. Этот факт является очень актуальным для ситуаций с нехваткой кислорода при сильных физических нагрузках.

В связи с тем, что запасы углеводов в организме с течением времени имеют свойство исчерпываться, выносливость и достижения (возможности) спортсменов снижаются. После того, как будут исчерпаны все запасы углеводов – к процессу поддержания, подключаются жиры и подпитывают бесперебойную работоспособность.

Собственно, вклад таких компонентов, как жиры и углеводы в обеспечение мышц энергией, напрямую зависит от работоспособности и уровня затрачиваемой энергии.

Но, при одной и той же интенсивности нагрузки, в условиях аэробной реакции, организм будет потреблять меньшее количество углеводов и больший уровень жиров. Это правило в основном действует для спортсменов, так как их мышцы систематически подвергаются нагрузкам, если сравнивать с неподготовленными людьми.

Таким образом, можно сделать вывод, что человек с тренированными мышцами расходует намного меньшее количество энергии, так как имеет в организме большие запасы углеводов.

Кислородная система может производить столько кислорода, сколько, может потреблять организм, и чем более высок уровень потребления, в момент выполнения напряженной работы, тем больше растет эффективность. В сравнении с происходящими аналоговыми реакциями, процессами ресинтеза АТФ, именно аэробный механизм характеризуется большими преимуществами:

  • Высокий уровень экономичности, так как из одной молекулы возникает 30 молекул АТФ, в сравнении с анаэробным процессом, в котором образуется только 3 молекулы.
  • Многофункциональность, так как в качестве энергетических компонентов выступают аминокислоты, углеводы, кетоновые тела и жиры.
  • Значительно большая продолжительность работы процесса, так как в момент покоя, ресинтез АТ сравнительно небольшой, но при увеличении нагрузок – он моментально растет до максимального показателя.

Но, при явных достоинствах, аэробный процесс характеризуется и некоторыми недостатками:

  • Постоянное потребление молекул кислорода, значительно лимитирует скорость его прохождения к мышцам и процесс его всасывания по средствам мембраны метохондрий.
  • Большой показатель развертывания по времени.
  • Минимальный показатель максимальной мощности.

В мышцах в ходе ресинтеза АФТ протекают определенные процессы. Самый важный и быстрый – креатинкиназная реакция, которая вырабатывает фофорильные элементы, при исчерпании АТФ.

Процесс протекает при работе активного компонента креатинкиназа, который состоит в группе фосфотрансферзов.

Такие элементы, как креатин и АТФ располагаются рядом с сократительными мышечными волокнами и в момент, когда уровень ресинтеза АТФ уменьшается, мгновенно запускают реакцию выработки фосфорильных компонентов. Мгновенно, после того как началась работа увеличения концентрации креатина, повышается и уровень креатинкиназы в мышечных тканях.

Креатинкиназная реакция может иметь обратное направление течения, на период активности мышечных тканей образуется прямая реакция, которая пополняет уровень АТФ в момент покоя мышц – обратная реакция является восстановлением креатинкиназы в мышце.

Именно креатинкиназный процесс, протекающий в тканях, играет важное значение в ходе обеспечения энергией мышц, при сильных физических нагрузках, например, во время бега, пружков, тяжелых упражнений по атлетике. Далее реакция ресинтеза протекает по метаболическому процессу гликолиза.

Элементы, которые выступают в роли катализатора процесса гликолиза, располагаются на мембранах саркоплазматического ретикулума, а также непосредственно в саркоплазме клеток. Основными ферментами гликолиза являются гликогенфосфорилаз и гексокиназ, которые активизируются при увеличении уровня фосфорной кислоты в тканях.

Гликолиз представляет собой важную реакцию, гарантирующую образование и поступление энергии при сублимации максимальной концентрации мощности. Допустимая длительность субмаксимальных упражнений составляет от 30 до 2,5 мин, в основным, это можно сравнить со спортивной ходьбой или, к примеру, плаванием.

Гликолическая реакция ресинтеза АТФ характеризуется минимальной эффективностью, это связано с тем, что большое количество энергии задерживается в молекулах молочной кислоты и более не может выделяться по средствам аэробного процесса окисления.

Собственно, именно гликохимические реакции, протекающие в организме, обеспечивают скорость и быстроту организма.

Итоговым результатом протекания процесса гликолиза будет выделяющаяся молочная кислота, которая собирается в мышцах и способствует изменению концентрации молекул водорода внутри клеток. Таким образом, все действующие изменения «рН» среды, в сторону увеличения кислотности.

В среде с небольшим показателем кислотности в основном происходит активация элементов дыхания и в то же время возникает угнетение ферментов, отвечающих за работы мышечных тканей и реакции ресинтеза АТФ. В самом начале процесса происходит перенос АТФ в межмембранное пространство, используя внутреннюю мембрану.

В этот момент ресинтез АТФ является связующим между креатином, проникающим из краетинкиназы. Именно такое взаимодействие способствует метахондриальной креатинкиназы, которая располагается во внешней мембране митохондрий и тем самым образуется креатиносфат.

Таким образом, возникающий элемент снова попадает в саркоплазму, в которой отторгает остаток элементов фофора с АТФ на саркоплазматическую АДФ.

Максимальный период протекания процесса не превышает 30 секунд, а максимальная мощность достигается за 2 минуты.
Данный метод характеризуется преимуществами, в сравнении с аналогами:

  • Намного быстрее достигается максимальная мощность
  • Показатель максимальной мощности намного больше, чем у аэробного способа
  • Происходит без необходимости использовать кислород и митохондрии

Хотя, даже гликолитический способ имеет и ряд недостатков:

  • Механизм имеет небольшой показатель экономичности
  • Большое скопление молочной кислоты в мышцах может навредить их стандартному функционированию и даже стимулировать их утомление

Миокиназный механизм протекает при большом количестве АДФ в саркоплазме и возникает, как вспомогательный метод, при условиях, что остальные возможности уже исчерпали себя и в данный момент уже близки к этому показателю.

Собственно, метод миокиназа может считаться запасным или аварийным, в котором из двух молекул АДФ образуется всего лишь одна молекула АТФ.

Мышечная усталость

Мышечная усталость

Миокиназная реакция в тканях чаще всего возникает при значительном повышении уровня АДФ.

В основном такая ситуация может возникать при сильной мышечной усталости.

Таким словом, можно сказать, происходящие аэробные и анаэробные реакции, обеспечивают высокий требуемый уровень энергии.

Общие показатели и энергетические возможности протекающих реакций

Ресинтез АТФ протекает и собственно сам входящий механизм характеризуется отличными друг от друга показателями энергообеспечения, которые протекают исходя из таких критериев:

  • «Мах» мощность
  • Быстрота протекания
  • Емкость по показателю матеболизма
  • «Мах» эффективность

«Мах» является наибольшим значением скорости возникновения элементов АТФ, в одном из метаболических реакций, которая ограничивает лимит интенсивности выполняемых действий, благодаря применяемым особенностям механизма реакции. Скорость протекания обуславливает максимальное время, за которое достигается наивысший уровень мощности ресинтеза аденозинтрифосфата.

Метаболическая емкость является показателем целостного значения АТФ, которое может возникать в процессе использования цепочки происходящих процессов ресинтеза АТФ, учитывая значение постоянного количества элементов обеспечивающих поставки энергии в мышцы.

Полномерное количество емкости своим количеством ограничивает объем выполняемого действия. Таким образом, подобная эффективность протекает ограниченной количеством энергии, которая скапливается в макроэргитических связях аденозитрифосфата.

Именно, эта энергия характеризует экономичность проделываемой в этот момент работы и в данном случае критерием служит общий показатель полезного действия.

Значение коэффициента полезного действия, в таком случае будет представлять собой отношение общего показателя полезной затрачиваемой энергии, к ее общему количеству, которое возникает в ходе вышеуказанного процесса. Общий коэффициент ПД при метаморфозах энергии, при метаболических процессах, в основном зависит, от:

  • Уровня фосфолирования
  • Показателя хемомеханических процессов

«Мах» эффективность таких хемомеханических сопряжений протекает практически одинаково и составляет 1\2 общей реакции.

«Мах» эффективность уровня фосфолирования является наивысшим значением в алактатном анаэробном процессе, и составляет 80%, и минимальный показатель – 40%, при возникновении реакции гликолиза – значение увеличивается до 42%. В стационарном аэробном процессе показатель равняется 58%.

Таким образом, можно сделать вывод, что процессы при анаэробных условиях характеризуются значительно увеличенной максимальной мощностью возникновения АТФ, но при этом имеют практически минимальный период удержания накопленных компонентов.

О том, что такое синтез АТФ, можно посмотреть на видео::





Оставить свой комментарий

Решите пример, если Вы человек * Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.

Поиск
Давайте дружить

Посетите страницы Как Здравие в социальных сетях!

ВКонтакте.      Фейсбук.      Google Плюс.      Одноклассники.     
Вверх
© 2012 - 2017 KakZdravie.com | Все права защищены | О проекте | Карта сайта | Контакты